A Work-Optimal CGM Algorithm for the Longest Increasing
Subsequence Problem

Thierry Garcia, Jean-Frédéric Myoupo and David Semé
LaRIA : Laboratoire de Recherche en Informatique d’Amiens
Université de Picardie Jules Verne
CURI, 5 rue du Moulin Neuf, 80000 Amiens, France

Abstract This paper presents a work-optimal
CGM algorithm that solves the Longest Increasing
Subsequence Problem. It can be implemented in the
CGM with P processors in O(NTf) time and O(P)
communication steps. It is the first CGM algorithm
for this problem and it is work-optimal since the se-
quential algorithm has a complexity of O(N?).

Keywords: Parallel Algorithms, Coarse Grained
Multicomputers, Longest Increasing Subsequence.

1 Introduction

The Longest Increasing Subsequence Problem
(LIS for short) is a good illustration of dynamic
programming and has interested many scien-
tists [2, 8, 10, 15, 18, 19, 20]. In July 1978,
E.W. Dijkstra at Marktoberdof’s school, asked
to his students to find the length of the longest
increasing subsequence in a sequence of inte-
gers. Even though this problem seems rela-
tively straightforward, few of them had been
able to solve it. Today, this exercise remains a
useful didactic example for topic of sequential
programming methodology. In particular it
shows how to strengthen an induction hypoth-
esis in a very explicit way [12, 13, 17]. Finding
LIS of two or more strings improves and speeds
the compression in case of data transmission,
for instance in image processing or in medical
data processing.

Finding the length is performed in time
O(N log N) (where N is the length of the input
sequence) sequentially [17]. On the other hand

we are interested in actually finding the longest
increasing upsequence. For the problem, there
exists a sequential algorithm running in time

O(N?) [14].

In recent years several efforts have been made
to define models of parallel computation that
are more realistic than the classical PRAM
models. In contrast of the PRAM, these new
models are coarse grained, i.e. they assume
that the number of processors P and the size
of the input N of an algorithm are orders of
magnitudes apart, P << N. By the prece-
dent assumption these models map much bet-
ter on existing architectures where in general
the number of processors is at most some thou-
sands and the size of the data that are to be
handled goes into millions and billions.

This branch of research got its kick-off with
Valiant [21] introducing the so-called Bulk Syn-
chronous Parallel (BSP) machine, and was re-
fined in different directions for example by
Culler et al. [4], LogP, and Dehne et al. [5],
CGM extensively studied in [1, 3, 6, 7, 9, 16].
CGM seems to be the best suited for a design
of algorithms that are not too dependent on
an individual architecture. We summarize the
assumptions of this model:

e all algorithms perform in so-called super-
steps, that consist of one phase of interpro-
cessor communication and one phase of local
computation,

e all processors have the same size M=0(%)
of memory (M > P),

e the communication network between the pro-
cessors can be arbitrary.

The goal when designing an algorithm in this
model is to keep the individual workload, time
for communication and idle time of each pro-
cessor within SLP, where T is the runtime
of the best sequential algorithm on the same
data and s(P), the speedup, is a function that
should be as close to P as possible. To be able
to do so, it is considered as a good idea the fact
of keeping the number of supersteps of such an
algorithm as low as possible, preferably o(M).
As a legacy from the PRAM model it is usually
assumed that the number of supersteps should
be polylogarithmic in P, but there seems to be
no real world rationale for that. In fact, algo-
rithms that simply ensure a number of super-
steps that are a function of P (and not of N)
perform quite well in practice, see Goudreau et
al. [11].

In this paper we present a work-optimal CGM
algorithm that solves the Longest Increasing
Subsequence Problem. This algorithm can be
implemented in the CGM with P processors in
O(NTE) time and O(P) communication steps.
It is the first CGM algorithm for this problem
and it is work optimal since the sequential al-
gorithm have a complexity of O(N?).

The paper is organized as follows. In section 2
we present the Longest Increasing Subsequence
problem and some sequential algorithms. Sec-
tion 3 presents the CGM solution of the LIS
problem. The conclusion ends the paper.

2 The Longest Increasing
Subsequence problem

2.1 Statement of the problem

Definition 1 Given a sequence A of N dis-
tinct integers, a subsequence of A is a sequence
L which can be obtained from A in deleting zero
or some integers (not necessarily consecutive).

Definition 2 A sequence is increasing if each
integer of this sequence 14s larger than the

previous integer. Given a sequence A =
{z1,29,...,zN} of N distinct integers, we
define an increasing subsequence or upse-
quence of length | as a upsequence of A :
{zi, iy, ...yzyy} withV 3,k : 1 < j <k <
[=> ij < 1 and Ti; < Zj,.

Definition 3 A longest or mazimal increasing
subsequence is one of mazimal length. Note
that a mazimal upsequence in not necessarily
unique.

2.2 Sequential algorithms for the
LIS problem

Definition 4 A decreasing subsequence of A
is a subsequence of A where the numbers are
nonincreasing from left to right.

Definition 5 A cover of A is a set of de-
creasing subsequences of A that contains all the
numbers of A.

Definition 6 The size of the cover is the num-
ber of decreasing subsequences in it, and a
smallest cover is a cover with minimum size
among all covers.

Lemma 7 If I is an increasing subsequence of
A with length equal to the size of a cover of A,
coll it C, then I is a longest increasing subse-
quence of A and C' is a smallest cover of A.

Proof 1 see [14]. O

We now summarize a sequential algorithm for
the LIS due to [14], which is the basis of our
CGM algorithm.

Let A be a set of N integers. We want to
construct a decreasing cover of A. The idea
is as follows: starting from the left of A, ex-
amine each successive number in A and place
it at the end of the first (left-most) decreas-
ing subsequence that it can extend. If there
are no decreasing subsequences it can extend,
then start a new decreasing subsequence to the
right of all existing decreasing subsequences.

This algorithm produces a cover of A which is

called the greedy cover in [14]. After the greedy
cover is found, a LIS of A can be found easily
as it is described in [14].

At the end of the algorithm described in [14],
I contains an LIS of A. The greedy cover of A
is found in time O(N?) and the LIS found in
time O(N) given the greedy cover.

Theorem 8 The i-th subsequence of the
greedy cover contains all element of A which
have the i-th position in the longest increasing
subsequence containing it.

Proof 2

Let GC; be the i-th subsequence of the greedy
cover.

Call xy, the last element of GC},

In regard of the greedy cover’s construction, we
have : 1 < x0 < ... < xj1 < Tj.

Then, x; is the i-th element of the longest in-
creasing subsequence containing it.

As each element of GC; is greater than the last
element of GC;, x; (i.e. the construction of
the greedy cover), then all element of GC; have
the i-th position in the longest increasing sub-
sequence containing it.

a

Find the position of an element in the longest
increasing subsequence containing it can be
done by the following proposition.

Proposition 1

Vi, Magjor[i|=1

Vi, j 1 j < i, Major[il]=maz(Major[j] + 1) if
Alj] < Afd].

Proof 3

Major[ix] = Majorlix_1] + 1 with Afig_1] <
A[Zk] and iy, tp_1 2 tp_1 < ig

Magjorlir_1]) = Major[ip_o]+1 with Afiy_o] <
Alig_1] and Jig_1,ig—2 @ ig—2 < ip_1

Majorlis] = Major[i;] + 1 with Afi;] < Alis]
and Jig, 11 111 < 19

Then,

Majorliy] = k with Ali;] < A[i1] < ... <
A['l’k72] < A[’L’kfl] < A[’lk] and 11 <19 < ... <
ih—o < k-1 < ik

We assume that k is maximum since we use
the proposition 1.

Thus, the position of the element Aliy], in the
longest increasing subsequence containing it, is

k.

|

The following algorithm is based on the propo-
sition 1. This sequential algorithm finds the
position of each element A[7] (Vi) in the longest
increasing subsequence containing A[i].

Sequential Algorithm 1

(1) for (i=0) to (i=N-1)
Major[i]=1

endfor

(2) for (i=1) to (i=N-1)
for (j=0) to (j=i)
if(A[j]<Ali] and Major[i]<Major[j]+1)
Major[i]J=Major[j]+1
endif
endfor
endfor

Complexity: It is obvious that the complexity
in time of this sequential algorithm 1is O(N?).

The following sequential algorithm computes
the Longest Increasing Subsequence from the
result of the sequential algorithm 1 which com-
putes for each element Afi] (Vi:0 <i < N)of A
its position (i.e. Major|i]) in the Longest In-
creasing Subsequence containing it (i.e. A[7]).
Then, we should find the maximum, called
Maz, between all the Major[i] (Vi:0 <i < N).
We call Ind the minimum index such that
Maxz = Major[Ind]. These operations are re-
alized by the first part of the sequential algo-
rithm 2.

Starting from Major[Ind], which represents
both the length of the LIS and the position
of the element A[Ind] in the LIS, we can easily
extract an LIS in reverse order from the input
sequence A. This operation is carried out by
the second part of the sequential algorithm 2.

Sequential Algorithm 2

(1) Max=0
Ind=0
for (i=0) to (i=N-1)
if (Major[i]>=Max)
Max=Majorl[i]
Ind=i
endif

endfor

(2) j=0
for (i=N-1) to (i=0)
if (Major[i]l=Max’)

RLIS[j]=A[i]
Max=Max-1
j=j+1
endif
endfor

Complexity: It is obvious that this sequential
algorithm 2 has a complezxity of O(N).

Remark The array RLIS contains the Longest
Increasing Subsequence in the reverse order. It
is straightforward to construct the LIS from
the RLIS in linear time.

In partitioning the sequence A, we can define
another sequential algorithm based on the pre-
vious ones (sequential algorithms 1 and 2).

Sequential Algorithm 3

(1) for (num=0) to (numzP-l)
for (i=0) to (i=%-1)
Major[”“m*N—f-l] 1
endfor
endfor

(2) for (ii=0) to (ii=P-2)
for (num=0) to (num=P-1)

if (num=ii) then

for (i=1)to (i=%-1)

for (j=0) to (j=i)

if (A[zemeN i< A[2em=N 4] and
Major[22N 4]« Major[242N 4]41)
Major[2N il=Major[242N 4]+1

endif
endfor
endfor
else
if (num>ii)
for (i=0) to (i=%-1)
for (j=0) to (j=2%-1)
if (AN 4jl<A[2e=N 4] and

Major[242X 4]« Major[X2 4j]+1)
Major[24 jl=Major[“2X +j]+1
endif
endfor
endfor
endif
endif
endfor

endfor

(3) Max=0

for (num=0) to (num=P-1)
for (i=0) to (i=%-1)
if (Major[242=Y +i]>=Max)
Max= Major[”“m*N +i]
endif
endfor
endfor

(4) j=0
for (numzP-l) to (num=0)
for (i=%-1) to (i=0)

if (Major[”“m*N +i]=Max’)
RLIS[j]= A[’”””*N+i]
Max=Max-1
j=j+1
endif
endfor
endfor

Complexity: The complexity of this sequen-
tial algorithm 3 is also O(N?). Indeed, we have
O(P x &) for the part (1), O(P x P x (£)?)
for the part (2), O(P x %) for the part (3) and
O(P x %) for the part (4).

3 The CGM solution for the
LIS problem

The CGM algorithm presented in this section
is directly issue to the sequential algorithm 3.
Each processor num (0 < num < P) have the
num-th partition of & elements of the input
sequence A. The fofowing CGM algorithm
presents the program of each processor num.

Note that the k-th part of the program below

corresponds to the k-th part of the sequential
algorithm 3.

CGM Algorithm 1

(1) for (i=0) to (i=%-1)
Major[2=l 4i]=1
endfor

(2) for (ii=0) to (ii=P-2)
if (num=ii) then
for (i=1)to (i=%-1)
for (j=0) to (j=i)
if (A[jJ<Al[i] and Major[i]<Major[j]+1)
Major[i]J=Major[j]+1
endif
endfor
endfor
Send(num,A,ALL_OTHERS)
Send(num,Major,ALL_OTHERS)
else
Receive(num’,A’)
Receive(num’,Major’)
if (num>num’)
for (i=0) to (i=%-1)
for (j=0) to (j=%-1)
if (A’[j]<Al[i] and Major[i]<Major’[j]+1)
Major[i]J=Major’[j]+1
endif
endfor
endfor
endif
endif
endfor

(3) Max=0
for (i=0) to (i=%-1)
if (Major[i]>=Max)
Max=Majorli]
endif
endfor
Send(num,Max,ALL)
for (i=0) to (i=P-1)
Receive(num’,Max’)
Max_proc[num’]=Max’
endfor
Max'=Max_proc[0]
for(i=1) to (i=P-1)
if (Max’<Max_proc[i])
Max’=Max_procli]
endif

endfor

(4) if (num=P-1)
j=0 for (i=%-1) to (i=0)
if (Major[i]=Max’)
RLIS[j]=A[i]
Max’=Max’-1

j=j+1

endif
endfor
Send(num,Max’,num-1)

else

Receive(num’,Max’)
j=0 for (i=%-1) to (i=0)

if (Major[i]=Max’)

RLIS[j]=A[i]
Max’'=Max’-1
j=itl
endif
endfor

Send(num,Max’,num-1)
endif

Remark Note that our approach uses two
functions called Send and Receive which are
defined as:

— Send(num,Max,ALL) where the values num
(the processor’s number) and Maz are sent to
all the processors,

— Send(num,A,ALL_OTHERS) where the
values num and A are sent to all processors
except the processor num,

— Receive(num’,A’) where the values num’
and A’ are received from the processor num’.
Complexity: The complexity with P proces-
sors is O(X5) in time and O(P) communica-
tion steps. We have a time complezity of O(%)
for the part (1), O(P x (%)?) with O(P) com-
munication steps for the part (2), O(%) with
O(1) communication steps, and O(P x %) with
O(P) communication steps for the part (4).
Then, this algorithm is work optimal, O(N?),
since the complezity of the sequential algorithm

is O(N?).

4 Concluding remarks

We have described a work-optimal CGM algo-
rithm that solves the Longest Increasing Sub-
sequence Problem. This algorithm can be im-
plemented in the CGM with P processors in
O(N?Z) time and O(P) communication steps.
It is the first CGM algorithm for this problem
and it is work optimal since the sequential al-
gorithm have a complexity of O(N?).

It will be interesting to reduce the number
of communication steps: is there another ap-
proach yielding optimal communication rounds
i.e. log P 7 It seems to be a difficult problem
since the LIS is based on a strong recursiv-
ity. Moreover, the complexity in time depends
on the communication steps. As we have a
work-efficient algorithm, reducing the commu-
nication steps yields the reduction of the com-
plexity in time and then it will be necessary
to have more processors in order to get work-
efficiency.

The next step of this work consists of imple-
menting our algorithm on many cluster of sta-
tions in order to study all its aspects.

References

[1] P. Bose, A. Chan, F. Dehne and M.
Latzel, Coarse Grained Parallel Maximum
Matching in Convex Bipartite Graph,
Proc. 13th International Parallel Process-

ing Symposium (IPPS’99), (1999) 125-

129.
[2] C. Cerin, C. Dufourd and J. F.
Myoupo, An Efficient Parallel Solu-

tion for the Longest Increasing Subse-
quence Problem, Fith International Con-
ference on Computing and Information
(ICCI’98)Sudbury, Ontario, IEEE Press,
(1993) 220-224.

[3] A. Chan and F. Dehne, A Note on Coarse
Grained Parallel Integer Sorting, Parallel
Processing Letters, (1999) 9(4):533-538.

[4] D. Culler, R. Karp, D. Patterson, A. Sa-
hay, K. Schauser, E. Santos, R. Subramo-
nian and T. Von Eicken, LogP:Towards a
Realistic Model of Parallel Computation,
4-th ACM SIGPLAN Symp. on Princi-
ples and Practices of Parallel Program-
ming (1996) 1-12.

[5] F. Dehne, A. Fabri and A. Rau-Chaplin,
Scalable Parallel Computational Geome-
try for Coarse Grained Multicomputers,

8]

[10]

[11]

[12]

[13]

[14]

[15]

International Journal on Computational
Geometry (1996) 6(3):379-400.

F. Dehne, X. Deng, P. Dymond, A. Fabri
and A. Khokhar, A Randomized Paral-
lel 3D Convex Hull Algorithm for Coarse
Grained Multicomputers, Proc. 7th ACM
Symp. on Parallel Algorithms and Archi-
tectures, (1995) 27-33.

M. Diallo, A. Ferreira, A. Rau-Chaplin
and S. Ubeda, Scalable 2D Convex Hull
and Triangulation Algorithms for Coarse
Grained Multicomputers, Journal of Par-
allel and Distributed Computing, (1999)
56(1):47-70.

P. Erdos and A. Szekers, A combinatorial
problem in geometry, Compositio Mathe-
matica (1935) 2:463-470.

A. Ferreira and N. Schabanel, A Random-
ized BSP/CGM Algorithm for the Max-
imal Independant Set Problem, Parallel
Processing Letters, (1999) 9(3):411-422.

M.L. Fredman, On computing the length
of the longest increasing subsequence, Dis-
crete Mathematic vol. 11 (1975) 29-35.

M. Goudreau, K. Lang, S. Rao, T.
Suel and T. Tsantilas, Towards Efficiency
and Portability: Programming with the
BSP Model, 8th Annual ACM Symp.

on Parallel Algorithms and Architectures

(SPAA’96) (1996) 1-12.

A. Gram, Raisonner pour programmer,

Dunod, Paris, (1988) 97-160.

D. Gries, The science of programming,
Springler Verlag (1981) (fifth printing
1989).

D. Gusfield, Algorithms on Strings, Trees,
and Sequences : Computer Science and

Computational Biology, Cambridge Uni-
versity Press (1997)

G. Jacobson and K. P. Vo, Heaviest
Increasing/Common Subsequence Prob-

[16]

[17]

[18]

[21]

lems, In LNCS 644, Third Annual Sympo-
sium on Combinatorial Pattern Matching,
(1992).

S.R. Kim and K. Park, Fully Scalable
Fault-Tolerant Simulations for BSP and
CGM, Journal of Parallel and Distributed
Computing, (2000) 60:1531-1560.

U. Manber, Introduction to algorithms,

a creative approach, Adisson-Wesley
(1989).

J. Misra, A technique of algorithm con-
struction on sequence, IEEFE Trans. Soft-
ware Engineering vol. SE-4 no. 1 (Janv.
1978) 65-69.

D. Semé, Optimal Parallel Solutions
for Longest Increasing Subsequence and
Longest Increasing Chain Problems Using
BSR Model, Submitted (2001).

T.G. Szymanski, A Special Case of the
Max Common Subsequences Problem,

Dep. Elec. Eng. Princeton University,
Princeton N.J. Tech. Rep. (1975).

L.G. Valiant, A Bridging Model for Paral-
lel Computation, Communications of the

ACM (1990) 33(8):103-111.

